II B.Tech - II Semester - Regular Examinations - AUGUST 2021

DIGITAL LOGIC DESIGN

(Common to ECE, EEE)
Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Convert the given Decimal number to Octal.

$$
(15)_{10}=(\quad)_{8}
$$

b) Simplify the Boolean function $F(x, y)=\sum m(0,2)$
c) Define Universal gate.
d) Convert SR flip flop to JK flip flop.
e) Define counter.

> PART - B
> UNIT - I
2. a) Explain the Procedure for finding 2's complement subtraction of any two binary numbers.
b) Discuss the error detection and correction codes.
3. a) Simply the following Boolean function into minimum literals
i) $(\mathrm{X}+\mathrm{XY})$
ii) $\mathrm{XY}+\mathrm{X}^{\prime} \mathrm{Z}+\mathrm{YZ}$
b) Perform the 10 's complement of the following decimal numbers.
i) 123456
ii) 676767

UNIT - II

4. a) Reduce the following function using K-map
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,4,5,8,9,12,13)$
b) Draw the logic diagram using only 2 - input NAND gates for XOR gate.

OR

5. a) Minimize the following function using K-map
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,4,5,8,9)+\mathrm{d}(3,2,10,11)$
b) Draw the logic diagram using only 2 - input NOR gates for $\mathrm{F}=(\mathrm{AB})^{\prime}$

UNIT-III

6. a) Explain the operation of 4×1 multiplexer
b) Design half adder using 2×4 Decoder.
7. a) Implement the following Boolean function using multiplexer. $\mathrm{F}=\mathrm{S}_{1}^{\prime} \mathrm{S}_{0}^{\prime} \mathrm{A}+\mathrm{S}_{1} \mathrm{~S}_{0} \mathrm{~B}$
b) Discuss about Read and Write operation in Random access memory.

UNIT - IV

8. a) Explain the operation of D flip flop with truth table.
b) Design a synchronous sequential circuit using T FlipFlops for the given state diagram.

OR
9. a) Explain the operation of JK flip flop with truth table.
b) Write down the design procedure for synchronous sequential circuits.

UNIT - V

10. a) Design a 4 bit binary synchronous counter with D FlipFlop.
b) Explain the operation of CMOS transmission gate. OR
11. a) Discuss the following terms in relation to integrated circuits.
i) Fan out ii) Power dissipation.
b) Design and explain the 2-input CMOS NOR gate.
